	A numerical and experimental study of heat and mass	Porte-électrode
edf	transfer during GTA welding of different austenitic	Electrode de tungstène Buse
	stainless steels	Atmosphère inerte Baguette c métal d'apr
<u>École</u> polytechnique	<u>K. Koudadje^{*,1,2}, C. Delalondre¹, M. Médale², J.M. Carpreau^{1,3}</u>	Metal de base Cordon
	1 EDF Research & Development, 6 quai Watier 78400 Chatou, France 2 Aix-Marseille University IUSTI CNRS UMR 7343, Marseille, France	Arc
Département Mécanique - Energétique Laboratoire IUSTI - UMR CNRS 6595	3 LaMSID UMR EDF-CNRS-CEA 2832, Clamart, France *koffi-k.koudadje@edf.fr	Bain de fusion

Introduction - Objectives

Because of the high quality of weld metal and of the weld bead surface, GTA welding is one of the most used arc welding processes. However, weld pool convection and the resulting thermal kinetic can affect the microstructure and properties of the resultant weld. This study aims to elaborate a predictive model for heat and mass transfer in the weld pool in order to investigate the weldability of stainless steel 304L with different chemical concentrations. The computed results were compared with the corresponding experimental ones for specimens containing low sulfur and high sulfur respectively.

Physical model

Convection in the weld pool and consequently the shape of the weldment depends on the balance among several forces, which includes Marangoni for electromagnetic force and buoyancy force. The **Marangoni** force, which depends on surface tension gradient, can be the main factor involved in w pool convection [1]. Heiple et al. [2 - 4] showed that trace elements alter fluid flow patterns by changing surface tension gradients on the weld p surface. The set of equations solved includes both **Navier-Stokes fluid dynamics equations and Maxwell's electromagnetic equatio** *Code_Saturne®* software is used to implement the developed model [5].

Pression d'ar

Lorentz

Cisaillement aérodynamique

Lorentz

ŧ

Plasma d'arc

Diffusion de la chaleur

Pertes par rayonnement

et convection du b

Assumptions :

In the developed numerical model, it has been assumed that the liquid metal flow is incompressible, Newtonian and laminar; the heat and current source from the arc torch have **Gaussian distribution** (boundary condition at the top surface); the weld pool surface remains horizontal and flat and the liquid fraction varies linearly with temperature in the solidification range. Energy loss is taken into account through constant emissivity and heat transfer coefficient (boundary condition at outer and bottom surfaces). In the mushy zone, the velocity field varies smoothly from a finite value in the liquid zone to zero in the solid one using a frictional dissipation according to Carman-Kozeny equation for flow through a porous media.

Experimental approach

Results

Computed flow pattern in the molten pool of stainless steel of 0.026 wt% (at left) and 0.007 wt% (at right) of sulfur content in spot welding configuration with mesh of 750 000 elements

COMPARISON EXPERIMENTAL - CFD CALCULATION

Welding configuration,	Weld pool depth (mm)		Weld pool width /2 (mm)	
Material sulfur content	Experimental	Calculated	Experimental	Calculated
Spot welding, Cs = 0.007 wt %	5.1 ±0.1	5.1	6.1 ±0.2	6.3
Spot welding, Cs = 0.026 wt %	5.6 ±0.1	6.1	5.9 ±0.2	5.1
Standard welding, 15 cm/mn, Cs = 0.007 wt %	2.2 ±0.1	1.1	3.9 ±0.2	4.8
Standard welding, 15 cm/mn, Cs = 0.026 wt %	2.4 ±0.1	2.5	3.9 ±0.2	4.3
Standard welding, 30 cm/mn, Cs = 0.026 wt %	1.5 ±0.1	1.5	3.3 ±0.2	3.6

Computed flow pattern in the molten pool of stainless steel of 0.026 wt% (at left) and 0.007 wt% (at right) of sulfur content in standard welding configuration with mesh of 750 000 elements

Work is in progress to address simulation of assembly of stainless steel plates of different material compositions

Weld pool characteristics when welding stainless steel plates with different sulfur concentration

References

[1] Heiple, C. R., Roper, J.R. 1982. Mechanism for minor element effect on GTA fusion zone geometry. Supplement o the Welding Journal. pp. 97s – 102s.

[2] Heiple, C. R., Roper, J.R., Stagner, R.T., Aden, R.J.. 1983. Surface active element effects on the shape of GTA, Laser, and Electron Beam Welds ' Supplement o the Welding Journal, pp. 72s – 77s

[3] Heiple, C. R., Burgardt, P., Roper, J.R., Long, J.L. 1984. The effect of trace elements on TIG weld penetration. Proceeding of the international conference on the effects of residual, trace and micro-alloying elements on weldability and weld properties. Cambridge: TWI. p 36

[4] Misra, T.J., Lienert, M.Q., Johnson, Debroy, T. 2008. An experimental and theoritical study of gas tungsten arc welding of stainless steel plates with different sulfur concentration. Acta Materialia. pp. 2133 – 2146

[5] Douce, A., Delalondre, C., Biausser, H., Guillot, J.B. 1989. Numerical Modelling of an Anodic Metal Bath Heated with an Argon Transferred Arc. ISIJ International. Vol. 43. No.8, pp. 1134-1141