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Basic phenomena  

 
Moving free surface 

The movement of the free surface should be considered whenever it is important to account for:  

• transients (for example: pool-filling or draining);   

• dispersion of scalar tracers/components by the free surface motion; 

• hydrodynamic effects on immersed structures; 

• formation of free-surface vortices due to the variation in space or in time of the water level (to 
the knowledge of the authors, no predictive formula exists);  

• swell and wave-breaking; let Hh stands for the crest-to-trough wave height, Lh for the wave 
length, H for the water depth: the limit of wave-breaking for beaches with a gentle slope is 
Hh/Lh < 0.14 in deep water and Hh/H < 0.8 in shallow water; an approximate generalization of 
these two criteria is Hh/Lh < 0.14 tanh(2πH/Lh), see (Aelbrecht 2000).  

The key non-dimensional numbers  to define each case are: 

• Froude number F = U/(g H)1/2 with F >> 1 for supercritical flows and F << 1 for subcritical 
flows (the Froude number plays a similar  role for free surface flows as the Mach number does 
in aerodynamics) 

• Reynolds number Re=UH/ν and Weber number We=ρU²H/σ (if Re > 30 000 and We > 120, 
the surface tension has no influence on the formation of free-surface vortices) 

 

In Code_Saturne: 

The Euler approach with a moving mesh (a.k.a. ALE)  is generally well suited for large deformations of 
the free surface (“large” with respect to the cell size of mesh; for example: one may consider that a 
deformation is large if there are more than 20 cells for one wave length). Wave-breaking cannot be 
captured with this approach.  

The displacement of the free-surface may be computed or specified by the user. If it is computed, the 
mass conservation may not be perfectly satisfied; this drawback is associated with the algorithm that 
is implemented to move the vertices and the faces of the mesh (and there is no Volume Of Fluid 
“VOF” method implemented in Code_Saturne for the time being). 

 

Particle laden flows 

The particles feature should be used if the following phenomena are to be studied: 

• transport, deposition, re-entrainment 

• chemistry (wall interaction) 

In particular, it is important to decide if: 

• the particles follow the fluid or if they should be tracked separately because of their own inertia 
or fluctuating motion (this is especially important to capture deposition phenomena) 

• the influence of the particles on the flow must be accounted for  

A non-dimensional number is important for this configuration:  

• The non-dimensional relaxation time-scale of the particles τp
+ = (ρp/ρf)dp

2u*2/(18νf
2) 

represents the time that is necessary for the velocity of a particle to adapt to that of the 
ambient flow (ρp and ρf represent the densities of the particles and of the fluid respectively, dp

 

the diameter of the particles, u* the wall friction velocity (roughly estimated as 5 or 10% of the 
mean bulk velocity) and νf

 the kinematic molecular viscosity of the fluid). One may consider 
that the particles follow the fluid if τp

+ << 1. Moreover, if τp
+ < 0.1 (generally for particles with a 
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diameter smaller that one micron) the deposition is affected by Brownian motion. For more 
details, one may refer to Peirano 2006.  

In Code_Saturne: 

If it is necessary to account for particles, at least two types of approaches may be considered: 

• Eulerian: represent the particles as a passive scalar tracer, with a diffusivity to be defined, 
under the hypothesis that they follow the fluid and that they do not have any influence on the 
flow itself (that is the choice that has been made for the coal combustion module).  

• Lagrangian: represent the particles with a statistical approach using a Lagrangian method. 
This method, more general, does not require the hypothesis that the particles follow the fluid. 
If it is necessary, the influence of the particles on the flow may be accounted for. The method 
is useful to study deposition and re-entrainment; however, it is important to underline that the 
physical phenomena are complex: for particles whose relaxation timescale τp

+ is lower than 1 
or 0.1, the standard modelling available in Code_Saturne is not appropriate and more advanced 
and more specific models are required.  

 

Incompressible, dilatable and compressible flows  

By definition, a flow is “compressible” if the fluid density is variable; if not it is  defined as 
“incompressible”1. For compressible flows, the pressure waves travel at a finite velocity and the Mach 
number (M=U/c) shows the relative importance of the fluid velocity to the compression wave velocity. 
In reality, the two types of flow are not clearly distinct since compressible flows start to behave like 
incompressible flows when the Mach number becomes small.  

For Mach numbers M=U/c > 0.3, phenomena travelling at the speed of the sound begin to be 
important2 and it becomes necessary to take into account the variations of the density due to pressure, 
temperature, species… The Boussinesq approximation (that takes into account the density variations 
only through the presence of the gravity force in the momentum equation) is not sufficient any more: 
the mass equation must contain the unsteady term (i.e.: ∂ρ/∂t + div(ρu) = 0) so that acoustic waves are 
accounted for. 

Only weakly compressible flows at M=U/c < 0.3 will be considered here and it will be assumed that the 
effects of the phenomena travelling at the speed of the sound are negligible (otherwise, Code_Saturne 
compressible flow module should be used). However, the flow may still be compressible, since the 
density is not necessarily uniform and constant. Several cases must be considered, depending on the 
amplitude of the relative variations of the density.  

Before the different cases are presented, the Boussinesq approximation must be introduced. This 
linearized approach accounts for the density variations, when they are small enough, only through the 
gravity force that appears in the momentum equation. With this approach, the mass conservation 
reduces to a steady constraint on the velocity3: div(u) = 0.  

                                                      
1 « Dilatable » usually refers to a compressible flow for which the variations of the density are assumed to be due 
to variations of the composition or of the temperature (and not to variations of the pressure or of the velocity), and 
for which the possible phenomena associated with pressure waves (that are assumed to be infinitely fast) can be 
neglected.  
2 The characteristic value M = 0.3 is the usual limit. It comes from the following analysis, and ensures that the 
density variations remain “small enough” (see for example (Viollet 1997) or (Wilcox 1997)). One considers a fluid 
accelerating out of a pressurized reservoir: the total enthalpy conservation on a streamline (without volume force 
and for steady-state conditions) leads to defining the total enthalpy, from which the “total” temperature (or 
“reservoir temperature”) is deduced. For a perfect gas, the total temperature reads: Tt = T (1+(γ-1)/2 M2). Under 
the hypothesis that the entropy does not change (P/Pt = (T/Tt) γ/(γ-1) = (ρ/ρt)γ), one obtains the “reservoir” pressure 
Pt = P (1+(γ-1)/2 M2) γ/(γ-1) and the corresponding density ρt = ρ (1+(γ-1)/2 M2) 1/(γ-1). With these formulae, one can 
see that the variation of ρ remains lower than 2% for M < 0.3.  
3 This simplified mass conservation equation comes from dimensional analysis considerations, starting from the 
full mass conservation equation ∂ρ/∂t + div(ρu) = 0, with ρ standing for the density and u for the fluid velocity. The 
equation can also be written as  (1/ρ) ∂ρ/∂t + u grad(ρ)/ρ  + div(u) = 0. The characteristic length-scale L and time-
scale δt depends on the physical configuration under consideration. With this notation, the magnitude of the three 
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It is usually considered that the Boussinesq approximation generally applies if4 ∆ρ/ρ < 0.1 (see for 
example: (LeQuéré 1992)). Indeed, (Paillère 2000) presents a configuration with ∆ρ/ρ = 0.01 for which 
the approximation is valid and a configuration with ∆ρ/ρ = 0.6 for which the approximation is not valid 
any more. Of course, this limit (∆ρ/ρ < 0.1) is not absolute: it merely indicates that the Boussinesq 
approximation is valid for “sufficiently small” density variations.  

 

The cases that must be considered are the following, depending on the density variation magnitude: 

• for small variations of the density, i.e. ∆ρ/ρ << 1 (usually ∆ρ/ρ < 0.1), the full mass 
conservation equation (∂ρ/∂t + div(ρu) = 0) may be used, but one may retain an approximation 
that is valid under some hypotheses: 

o for steady flows (∂ρ/∂t=0), the Boussinesq approximation may be used; 

o if the flow is not steady, one still may rely on the Boussinesq approximation (and use 
div(u) = 0 as the mass equation) provided the time-scale associated with the 
variations of the density be the convective scale (U/L), which is precisely what is 
assumed here with M < 0.3. Since ∆ρ/ρ << 1, one may also use the approximation 
div(ρu) = 0.  

• For significant variations of the density (usually ∆ρ/ρ ≥ 0.1), the Boussinesq approximation is 
not valid any more: 

o for steady flows, (∂ρ/∂t=0), one may retain div(ρu) = 0 as the mass conservation 
equation; 

o if the flow is not steady, it is necessary to use the full mass conservation equation 
∂ρ/∂t + div(ρu) = 0. 

As a conclusion, for M < 0.3, and under the hypothesis that the effects of the phenomena travelling at 
the speed of the sound are negligible (pressure waves, faster than the material waves), the mass 
conservation equation that may be used is as follows:  

M < 0.3 Steady Unsteady 

∆ρ/ρ < 0.1 ∂ρ/∂t + div(ρu) = 0 

or div(ρu) = 0 

or div(u) = 0 

∂ρ/∂t + div(ρu) = 0 

or div(ρu) = 0  

or div(u) = 0  

∆ρ/ρ ≥ 0.1 ∂ρ/∂t + div(ρu) = 0 

or div(ρu) = 0 

 

∂ρ/∂t + div(ρu) = 0 

Table 1: mass conservation equation for M < 0.3 

For more detail, (Gray 1976) provides an example for the derivation of the mass, momentum and 
temperature equations where Taylor expansions are used to write the physical properties (and in 
particular the density) as functions of temperature and pressure variations. The hypotheses required 
for the Boussinesq approximation to be valid, appear clearly in this systematic approach. For the 
specific cases considered in this paper (water and air at 1 atmosphere and 15°C), the authors obtain a 
domain of validity defined from the relative variations of the temperature and of the pressure, of the 
partial derivatives of the properties with respect to these two variables, of the Rayleigh and Prandtl 
numbers, and of characteristic length- and time-scales. 

                                                                                                                                                                      

terms are respectively (∆ρ/ρ)(1/δt), (∆ρ/ρ)(u/L) and u/L. For ∆ρ/ρ << 1, the second term is negligible compared to 
the third one; moreover, if δt is not much smaller that L/u (the time-scale characteristic of the material waves), the 
first term is also negligible, so that the equation reduces to div(u) = 0. 
4 For the air, considered as a perfect gas at atmospheric pressure, the limit ∆ρ/ρ < 0.1 characterizes a 
temperature variation ∆T/T < 0.1 (with T in Kelvin), i.e. a variation of 30 K for T=300 K. 
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The non-dimensional numbers that must be evaluated in this configuration are the following: 

• Mach number M = U/c (M > 0.3: compressible flow) 

• relative variation of the density ∆ρ/ρ 

• time-scale characteristic of the flow U/L and of the boundary conditions 

 

In Code_Saturne: 

For M > 0.3 (compressible flows), specific numerical schemes and physical models are required. A 
numerical scheme for compressible flows is available in Code_Saturne but it has benefited from little 
feedback and its use requires some expertise (boundary conditions, thermodynamics for fluids other 
than perfect gases, multi-component mixture, …). 

For M < 0.3 the standard scheme in Code_Saturne can be used if div(ρu) = 0 is a valid equation for 
mass conservation (Table 1), i.e. except for unsteady flows with ∆ρ/ρ ≥ 0.1 (in this case (for ∆ρ/ρ ≥ 
0.1), a modification of the algorithm of Code_Saturne is necessary). 

 

Natural/forced convection, laminar/turbulent flows  

For M < 0.3, the reduced Froude number is Fr = U/(g (∆ρ/ρ) H)1/2. Natural convection effects are 
negligible for Fr >> 1 (for example for Fr > 10); otherwise, the gravity force and the density variations 
must be accounted for (at least using the Boussinesq approximation, i.e. with the buoyancy term in the 
momentum equation). 

If gravity has an influence (natural convection), one should evaluate: 

• the gradient Richardson number that allows to determine if gravity effects  inhibit turbulence 
(Ri > 0.2); 

• the Rayleigh number that makes it possible to determine if the regime is laminar or turbulent; 
this is useful to a priori evaluate thermal fluxes (using correlations), for comparison to the 
computational results; 

If gravity does not have any influence (forced convection), one should evaluate: 

• the Reynolds number that allows us to determine if the regime is laminar or turbulent; this is 
useful to evaluate thermal fluxes a priori (using correlations, such as Colburn’s) and head 
losses, for comparison to the computational results; 

The non-dimensional numbers to evaluate in that case are the following: 

• Reduced Froude number Fr = U/(g (∆ρ/ρ) H)1/2 

• Gradient Richardson number Ri 

• Rayleigh number 

• Reynolds number 

 

In Code_Saturne:  

 

When thermal phenomena are neglected or the flow is dominated by forced convection, it is advised to 
use: 

• High Reynolds number mesh (i.e. a coarse wall grid resolution): 

o the k-epsilon with linear production as the default choice (ITURB= 21) 

o the SSG Reynolds Stress Model (ITURB= 31), whenever secondary motion or 
turbulent mixing is involved 

• Low-Reynolds number mesh (i.e. a fine wall grid resolution): 
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o The v2f model as the default choice (ITURB=50) 

The k-omega SST model (ITURB=60) may be used if it is not clear whether the mesh refinement at 
the wall makes the mesh suitable for a high Reynolds or a low Reynolds approach. It is not advised to 
use this model otherwise. If possible the v2f model should be used. 

For mixed or natural convection phenomena, it is recommended that a sufficiently fine mesh at the 
wall should be used (usually possible when the Rayleigh number is small). If it is not possible to use 
such a fine (low Reynolds number) mesh, one may expect poor results for natural or mixed 
convection. In this case, there is no really best turbulence model but it is advised to use k-epsilon or 
compare the results for a variety of different turbulence models (eg k-epsilon with linear production 
(ITURB= 21), k-omega SST model (ITURB=60) and SSG Reynolds Stress Model (ITURB= 31)). 

 

LES will be used only in cases where local and instantaneous data are required, or when such 
phenomena may influence the results that are looked for (for example: mixing by large structures that 
RANS models may not be able to capture). In such cases, the standard Smagorinsky model will be 
used by default: for complex configurations, the results produced with this model are most often as 
satisfying as those obtained with more advanced models. The LES model WALE may also be of 
interest (in Code_Saturne this model runs approximately twice as fast as the Smagorinsky model and 
does not generate turbulent viscosity in laminar flows which is a well known problem with the 
Smagorinsky model). 

One may also define the roughness of the wall (dynamic and thermal roughness:in the GUI, key-word 
IPARUG).  

For the “scalars” turbulent fluxes (tracers, concentration, temperature, enthalpy…), the only choice in 
version 2.2 and below of Code_Saturne  is to use the high Reynolds number “SGDH” (single gradient 
diffusion hypothesis) model. In Code_Saturne, this model is used with wall-functions and the 
Boussinesq approach so that modelling of the turbulent fluxes is proportional to the gradient of the 
advected scalar (the coefficient of proportionality is the ratio of the turbulent viscosity to a turbulent 
Prandtl or Schmidt number).  

This approach suffers limitations, especially for mixed/natural convection or for low Reynolds number 
flows (whatever the convection regime). The impact on the solutions is difficult to quantify a priori. For 
non-equilibrium anisotropic flow at high Reynolds numbers, the modelling approaches may encounter 
limitations; wall-functions assume that the boundary layer is in equilibrium and Boussinesq turbulence 
modelling supposes that the turbulence is isotropic.  More models are available in Code_Saturne 3.0 
(GGDH – general gradient diffusion hypothesis -, AFM – algebraic flux model –, DFM – differential flux 
model -, to be used in conjunction with the RSM) which take into account the anisotropic nature of the 
velocity and the scalar fields.  

 

In all cases, the user must refrain from varying the turbulent Prandtl and Schmidt numbers with 
the configuration studied. Such an adjustment would be equivalent to a case-dependant modification 
of the diffusion/mixing predicted by the model: in practice, this would result in user-driven temperature 
or concentration results, denying to CFD computations their predictive potential.  

 

Secondary motion 

Identify the elements bound to create secondary motions (corner vortices, flow structures downstream 
a bend, vortices in the dead leg of a T-junction, cyclones separators…) and their potential impact 
(local exchange coefficient, perturbation of a stratified flow, source of thermal fluctuations, particle 
capture, tracer advection…). These elements should be borne in mind when choosing the turbulence 
model (see the previous paragraph). 

 

Tracers or passive scalars  

 

In Code_Saturne: 
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Nature of the scalar 

One considers here the “scalars” that represent tracers in Code_Saturne (excluding temperature, 
enthalpy and the other scalar quantities that may be computed, such as the turbulent variables for 
example). 

 

Code_Saturne solves a generic transport equation5 for the scalar Y:  

∂(ρY)/∂t + div(ρuY) = div(K grad Y) + ST_Y 

Hence, the user must verify that this scalar equation is representative of the problem of interest from a 
physical point of view.  

 

In the following, one considers the variable s that stands for the concentration of a tracer, in kg/m3, (for 
example, s may represent the mass of salt dissolved in the water, per unit of volume of the solution). 
The equation that must be solved for s is the following6 (obtained from considerations on the 
conservation of the mass of salt):  

∂(s)/∂t + div(us) = DST_wor 

However, this is not the equation that Code_Saturne solves. So s should not be chosen as a “scalar” in 
the sense of Code_Saturne. 

A change of variable is required in order to retrieve the equation solved for “scalars” in Code_Saturne. If 
ρ stands for the density of the solution (here, salty water), a new variable s’ is defined as:  

s’=s/ρ 

With this definition, s’ is solution of the equation solved by Code_Saturne for “scalars”: 

∂(ρs’)/∂t + div(ρus’) = DST_s’, 

The variable s’, contrary to s, can be selected as a “scalar” in the sense of Code_Saturne. 

 

The user may prefer to use a non-dimensional variable instead of s’. For example, with s’0 and a0 
standing for constants coefficients, one may define X as: 

X = s'/s'0 - a0 

With this definition, X is solution of the equation solved by Code_Saturne for the “scalars”: 

∂(ρX)/∂t + div(ρuX) = DST_X, 

The variable X, as s’, can be selected as a “scalar” in the sense of Code_Saturne.  

 

Remark 1: it is important to underline that the non-dimensional variable standing for the salt 
concentration and that may be selected as a “scalar” in the sense of Code_Saturne is not s/s0 – a0, but 
(with s’0 = s0/ρ0): 

X = (s/ρ) / (s0/ρ0) - a0 

Remark 2: the choice of the boundary conditions for the advected scalar must be done in accordance 
with the change of variable that defines the selected “scalar” in the sense of Code_Saturne. Usually, 
this does not lead to any difficulty for Dirichlet conditions (for example, the value imposed at the inlet 
would be defined as: X_inlet = (s_inlet/ρ_inlet) / (s0/ρ0) - a0). However, troublesome situations may 
arise for non-zero flux conditions, if the boundary condition of the density is not explicitly defined.  

                                                      
5 ST_Y stands for the source terms that may appear for the scalar Y, excluding the molecular diffusion. 
6 DST_wor stands for the diffusion and potential source terms for s in this equation (for which the density of the 
fluid solution does not explicitly appear on the left-hand-side). 
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In conclusion, the choice of the “scalars” that can be considered as variables in Code_Saturne requires 
careful attention. For example, if s is the concentration of salt in kg/m3 (mass of salt per unit of volume 
of solution) and ρ the density of the salted water in kg/m3, the following variables can be selected as 
“scalars” in the sense of Code_Saturne: 

• s’ = s/ρ (mass of salt per unit of volume of solution / density of the solution, i.e. mass fraction 
of the salt) 

• Cppm = s’ * 1 000 000 (mass fraction of the salt in ppm – parts-per-million)  

• X = (s/ρ)/(s0/ρ0) – a0 (non-dimensional mass fraction) 

 

Value of the diffusivity  

For a scalar Y, the equation implemented in Code_Saturne is, (as indicated above): 

∂(ρY)/∂t + div(ρuY) = div(K grad Y) + ST_Y 

However, the diffusion term may be expressed as a function of another variable C = A Y.  

∂(ρY)/∂t + div(ρuY) = div(Kv grad C) + ST_Y 

Under the hypothesis that the variations in space of A are negligible, a common approach is to define 
K from Kv as follows (the impact of this approximation is usually limited, in particular when the 
turbulent diffusion, which is modelled, prevails): 

K = Kv A 

For example:  

• K = ρ Kv for C = ρY (with C a concentration s in kg/m3 and Y the associated mass fraction s’)  

• K = Kv / Cp for C = Y / Cp (with C the temperature and Y the enthalpy for a perfect gas) 

 

A more general approach may be envisaged, under the hypothesis7 that C may be expressed under 
the form C(Y), one gets grad C = d (C)/dY grad Y, and it is possible to derive the expression for K that 
is necessary to complete the input data required by Code_Saturne to solve the equation on Y: 

K = Kv d(C)/dY 

For example:  

• In a binary gaseous mixture with Ma and Mb the molar masses of the components “a” and “b” 
and with Y the mass fraction of the component “a”, the volume fraction of the component “a” 
reads C(Y) = (Y/Ma)/(Y/Ma+(1-Y)/Mb) and the diffusivity is K = Kv (MaMb)/(YMb+(1-Y)Ma)

2. 

• In a salt water solution for which the density ρ depends only on the mass fraction of salt Y, the 
mass of salt per unit of volume of salted water reads C(Y) = ρ(Y)Y and the diffusivity of the 
salt is K = Kv (ρ+Ydρ/dY). 

 

Coupling with the conduction in solids (conjugate gradient with SYRTHES) 

When the objective of the study is to determine a thermal load in a structure, an independent thermal 
study with boundary conditions representing the fluid thermal load with correlations may be sufficient. 
Equally the computation of the thermal field in the solid is not always compulsory and predefined 
correlations may be sufficient to provide boundary conditions for the fluid calculation. A fully coupled 
calculation between the fluid and the solid is required if one is interested in a transient load, local 

                                                      
7 C may not be a function of Y exclusively: for example, for a concentration of salt, when the density also depends 
on the temperature T, C is a function of Y and T (C = ρ(Y,T)Y = C(Y,T)). In this case, the approach remains valid 
if it is possible to neglect the effects of the transport of mass by the diffusion created by the temperature gradient 
(otherwise, some terms depending on the gradient of the temperature should be added to the equation of the 
scalar Y). 
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characteristics, or if the geometry is too complex for reliable correlations to be available.  

The coupling between fluid and solid computations must be taken into account only if a mutual 
influence is suspected. This will be the case especially if the solid is bound to create thermal bridges 
between fluid zones that (would otherwise not “see” each other and that) would not mix spontaneously 
(for example: the thermally conductive wall of a pipe containing a stably stratified flow)  

• In that case, it is necessary to evaluate the time-scale of the conduction in the solid (Ls
2/λs, 

ratio of the square of a characteristic length of the solid to the thermal conductivity of the 
solid) and the time-scale characteristic of the fluid, i.e. the minimum between at least the 
characteristic convective time-scale U/L (velocity/characteristic length), a characteristic time-
scale representative of the possible gravity effects over a height H, (H/(g∆ρ/ρ))1/2, and a 
characteristic time-scale for turbulence, k/ε.  

• These estimations will show if it is necessary to adopt a specific approach to implement a 
coupled modelling (for example, if the characteristic time-scale of the solid if several orders of 
magnitude larger than that of the fluid, an artificial acceleration of the convergence of the solid 
conduction may be employed). These calculations may even help determining if the coupling 
is simply relevant (it may be useless to couple a solid that has a very large thermal time-scale 
to a fluid subjected to very rapid variations about a permanent state).  

The non-dimensional numbers to evaluate in that case are the following:  

Ratio of the time-scales solid/fluid: (Ls
2/λs) / min (U/L, (H/(g∆ρ/ρ))1/2, k/ε) 

 

Steady / Unsteady flow  

Three types of flows may be considered:  

• statistically permanent flows: one will try and model a permanent state 

• flows with an inherent unsteadiness: one will compute the time-scales of the different 
phenomena that may play a role. This makes it possible to determine whether some of them 
may be neglected (for example, if they are too slow with respect to the others)8 or to 
determine the time necessary to reach a possible permanent state. Examples of time-scales: 

o convection:   L/U  

o gravity:   (H/(g∆ρ/ρ))1/2  

o turbulence:   k/ε  

o vortex shedding:  L/ (U S), where S stands for the Strouhal number, i.e. the non-
dimensional frequency of vortex shedding behind an obstacle of characteristic size L. 

• Flows for which the unsteadiness is driven by the boundary conditions: one must compute the 
time-scales associated with the boundary conditions and compare them to the time-scales of 
the other phenomena. Of course, the analysis depends of the boundary conditions considered 
(explosion, valve closing, mass flow rate ramp…).  

The (non-) dimensional numbers to evaluate in that case are: 

• Fluid time-scales: U/L, (H/(g∆ρ/ρ))1/2, k/ε  

• Strouhal number  

 

Domain of interest 

The boundaries of the domain will be defined and their position justified. This may require using 
correlations that provide, for example, the minimal length for a specific type of flow development (pipe 
flow, jet, mixing layer…) so as to define the inlet or the outlet locations.  

                                                      
8 A priori, this analysis is covered by the calculation of non-dimensional numbers such a as the Reynolds number, 
the Froude number, the Mach number, that compare the convection, diffusion, gravity and acoustic phenomena.  
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The source and sinks for the momentum (head loss, deviation…) and temperature (heat) will be 
defined and the precision with which they shall be dealt with will be specified.  

The inlet and outlet boundary conditions will be defined and the uncertainties indicated (at least by 
providing a minimal value, a maximal value and a probable value). The upstream and downstream 
regions of the domain will be described as much as possible (singularities, head losses of the 
circuits…).  

The surface condition will be indicated (smooth/rough), and the height of roughness ζ will be provided 
under a non-dimensional form ζ+= ζu*/ν (ζ+ < 5: smooth, ζ+ > 70: rough). 

The non-dimensional numbers to evaluate in that case: 

• Non-dimensional size of the surface roughness  
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 Non-dimensional numbers 

F  Froude  U/(g H)1/2 inertia / gravity  
(or velocity / wave 
speed) 

F > 1: supercritical flows,  
F < 1: subcritical flows   
The Froude number plays the same 
role for free surface flows as the 
Mach number does for aerodynamics  

Fr  Reduced 
Froude  

U/(g (∆ρ/ρ) H)1/2 inertia / reduced 
gravity  

Fr >> 1: differential gravity forces are 
negligible with respect to forced 
convection  

Gr Grashof g β ∆T L3/ν2 reduced gravity / 
viscous effects  

Equivalent to the square of a 
Reynolds number built on a natural 
convection velocity  

M  Mach U/c inertia / wave 
propagation  

M > 1: supersonic  
M < 1: subsonic 
c2 = (∂P/∂ρ)|s and for a perfect gas in 
particular c2 = γ P/ρ  
c is of the order of 300 m/s in air and 
of 1500 m/s in water (1 bar, 25°C) 

Nu  Nusselt Φ L/(λ∆T)  non-dimensional 
thermal flux  

Correlations such as Colburn, Mac-
Adams (depending on Re, Pr, Ra) 

Pr  Prandtl ν/a viscous effects / 
conduction effects  

0.6 to 1:  gas  
1 to 20:  usual liquids  
1000 to 10 000: oils 
0.005 to 0.05:  liquid metals 

Ra Rayleigh g β ∆T L3/(νa) Gr Pr Characteristic of the natural 
convection regime (laminar below 105 
for example) 

Re Reynolds UL/ν inertia / viscous 
effects 

Re > 5000: turbulent flow (this limit 
may be lower for specific types of 
flow) 

Ri Gradient 
Richardson  

βg(∂T/∂z)/(2s:s) gravity / turbulence Ri > 0,2: turbulence inhibited 
pure shear:    2s:s = ½(∂U/∂y)2 

pure impact:  2s:s =  2(∂U/∂x)2 

Sc  Schmidt ν/D viscous effects / 
diffusive effects  

Equivalent of the Prandtl number for 
the diffusivity of the species 

S  Strouhal f L/U non-dimensional 
frequency  

- 

We Weber ρU2L/σ inertia / surface 
tension  

We >> 1: surface tension has no 
influence  
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