

Study of Rotating Stall in Centrifugal Compressor

Andrew Heffron

Supervisors: Dr. Eldad Avital and Prof John Williams

Introduction - Rotating Stall

Rotating stall is an instability that can occur before surge in compressors.

It can cause a decrease in performance and efficiency, along with structural damage.

It's caused by adverse pressure gradients and secondary flow features that are prevalent in centrifugal compressors, particularly at off-design operating conditions.

Rotating stall is a global feature and requires the modelling of the full compressor to accurately capture it.

Usage of Code_Saturne and Problems

Code_Saturne is an open-source code that can solve a wide range of CFD problems.

- Good scaling on clusters
- Wide-range of turbulence models and LES
- Open-sourced
- Good results for turbomachinery flows

However, some limitations of *Code_Saturne* exist in regards to compressible flow

- The algorithm within each time iteration is 'non-conservative' and depends on following iteration to ensure conservativity.
- Compressible module isn't formulated for a rotating reference frame.
- Only 1st-order in time and space

Incompressible Flow in Turbomachinery

20 impeller blades at 55° backsweep with a vaneless diffuser

The inlet and outlet radius are 0.435 m and 0.765 m, respectively.

 $\dot{m}_d = 30~kg/s$ and an off-design $\dot{m} = 23.61~kg/s$

Rotational speed of 1862 rpm

Maximum Mach number is less than 0.3; incompressible flow assumption is made.

A single passageway was modeled with periodic BC in the rotational direction.

Mass flow rate was imposed on the inlet and a static pressure on the outlet.

k-ω SST model with curvature correction was used.

Mesh generated with ANSYS® ICEM

- 2.3 millions cells used
- Mean y⁺ of 51 with max and min y+ of 146 and 3.9, respectively.

Rotating Stall in NASA LSCC

In Progress...

Modifying Compressible Algorithm

Governing Equations

Inertial Reference Frame

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\mathbf{u} \otimes \rho \mathbf{u}) = -\nabla p + \nabla \cdot \mathbf{t}$$

$$\frac{\partial (\rho e)}{\partial t} + \nabla \cdot \left((\rho \mathbf{u}) \left(e + \frac{p}{\rho} \right) \right) = \mathbf{\tau} \cdot \mathbf{u} - \nabla \cdot k \nabla T$$

Rotating Reference Frame

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}_r) = 0$$

$$\frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\mathbf{u} \otimes \rho \mathbf{u}_r) = -\nabla p + \nabla \cdot \mathbf{t} - \rho(\mathbf{\Omega} \times \mathbf{u})$$

$$\frac{\partial (\rho e)}{\partial t} + \nabla \cdot \left((\rho \mathbf{u}_r) \left(e + \frac{p}{\rho} \right) \right) = \mathbf{\tau} \cdot \mathbf{u} - \nabla \cdot k \nabla T - \nabla \cdot (\mathbf{\Omega} \times \mathbf{R}) p$$

Compressible Algorithm

1.)
$$\frac{\partial P}{\partial t} + \nabla \cdot (\rho^n u^n) - \nabla \cdot (\Delta t \nabla P^*) = 0$$
 Enforces mass conservation from t^{n-1} , and obtain a prediction for P and Q at t^n .

3.)
$$\frac{\partial(\rho e)}{\partial t} + \nabla \cdot \left((\rho \mathbf{u}) \left(e + \frac{p}{\rho} \right) \right) = \mathbf{\tau} \cdot \mathbf{u} - \nabla \cdot k \nabla T \quad \longleftarrow \text{ Energy Prediction}$$

2b.)
$$\frac{1}{\psi^n} \frac{\partial (\delta P)}{\partial t} + \nabla \cdot \left(\frac{1}{\psi^n} u^* \delta P \right) - \nabla \cdot (\Delta t \nabla \delta P) = -\nabla \cdot (\rho^* u^*) - \frac{\partial}{\partial t} (\rho^* - \rho^n)$$

Following the PISO scheme, a pressure correction equation is solved after momentum prediction to ensure conservativity.

Compressible Algorithm

New Compressible Algorithm

Mass flux and convective pressure term are interpolated with the AUSM*-up flux splitting scheme

- Gives good results for all Mach regimes (subsonic to hypersonic flows)
- Good alternative to standard Rhie and Chow scheme

A 2nd-order upwind scheme is implemented with the minmod limiter.

$$\phi_f = \phi_i + \varphi(r) \nabla \phi_i$$

$$\varphi(r) = \max(0, \min(1, r))$$

$$r_i = \frac{\emptyset_i - \emptyset_{i-1}}{\emptyset_{i+1} - \emptyset_i}$$

Test Cases

Sod Shock Tube

Channel Flow with a Bump

- Three mesh sizes- 225x120, 179x80, 75x40
- Tested for Mach numbers of 0.1, 0.675, 1.4
- Bump height is 0.1L for subsonic flow and 0.04L for supersonic flow

Shock Tube

Channel Flow with Bump – M=0.675

V4.0.1

Mod – 1st order

Mod – 2nd order

Channel Flow with Bump – M=0.675

Channel Flow with Bump

NASA LSCC - Compressible

NASA LSCC - Compressible

Conclusion

Code_Saturne predicts the flow in a centrifugal compressor accurately, however the global prediction of the pressure curve is off.

- Mediocre pressure curve is due to compressibility effects.
- Preliminary results with modified compressible algorithm are promising.

Modifying the compressible algorithm into a PISO-like scheme gives better prediction for the two test cases shown, and introducing a 2nd-order scheme further improves the results. However, the results was found to be oscillatory, particularly for 2nd-order, which solicits a closer look at the boundary conditions and further work to ensure that the 2nd-order scheme is TVD.

Future Work

Test with rotating mesh

Extend the presented algorithm to 2nd order in time.

Test and study the NASA CC3, a transonic centrifugal compressor.

Implement non-reflecting boundary conditions for inlet and outlet

24

Compressible Algorithm

